Numerical Analysis Preliminary Exam

August 15, 2011

Solutions



1. Quadrature
The Chebyshev polynomials of the second kind are defined as

1
7
n+1 n+1

Un(r) =

(x), n=>0,

where T}, 11(x) is the Chebyshev polynomial of the first kind.

(a) Using the form T),(x) = cos(nf), x = cos(d), x € [—1,1], derive a similar expression
for U, ().

(b) Show that the Chebyshev polynomials of the second kind satisfy the recursion
U() (]3) =1
Up(z) = 2x
Upi1(z) = 22U,(z) — U,y

(¢) Show that the Chebyshev polynomials of the second kind are orthogonal with respect to
the inner product

< f,g>= /11 f(x)g(x)V1 — 22dx.

(d) Derive the 3 point Gauss Quadrature rule for the integral

W) = S wif(ey) = [ f@VT=de +&(h),




Solution:

(a) Using the expression T,(z) = cos(nf), x =cos(f), x € [—1,1], we have

() =~ )sinn+ 10) ) = (o )0 U0,

which yields
sin((n + 1)6)
sin()

(b) The first two terms are found by definition. The recursion is established by noting

sin((n +2)0)  sin((n)0)
sin(6) sin(6)
sin(((n+1) +1)0) N sin(((n+1) —1)0)
sin(#) sin(#)
sin((n + 1)6)
sin(6)

U, (z) = r =cos(f), x=][-1,1].

Un+1<£€> + Unfl(.%) =

= 2cos(0) = 22U, (x).

Substituting z = cos(f) yields the result.

(c) Unsing the trig substitution, = cos(#), we have
1
<UpUp> = / ( YU ( W1 — 22dz

/ ) sin((m + 1)) 2018

sin(6 sin(6)

0) sin((m + 1)0)do

\

= 0 forn;ém

(d) The quadrature points are the roots of Us(z) = 0, which can be found either using the
recursion to derive Us(z) = 82° — 4x or by setting sin(40) = 0 which yields 0; = k7 /4
for j = 1,2,3. The result is

xlz_l/ﬁalézoaxfﬂ:l/\/i

The weights can be found by appealing to symmetry to imply w; = ws. We also have

1 0
w1+w2+w3:/1\/1—x2dx:/0 sin?(0)df = /2



and

1 ™
w1 Tt + wyry = % + % =w, = / 221 — 22de = / sin?(0) cos?(0)do
-1 0
™1 — cos?(2 ™1 4
- COS(H)dQZ/ L cos(0) by _ g
0 4 0 8

Finally, this yields wy = 7/8, wy = 7/4, w3 = w/8



2. Linear Algebra

(a) Descibe the singular value decomposition (SVD) of the m x n matrix A. Include an
explanation of the rank of A and how the SVD relates to the four fundamental subspaces
R(A) Rangeof A R(A*) Range of A*
N(A) Nullspace of A N(A*) Nullspace of A*

(b) Perform the SVD on the matrix

2 1
A=1|2 -1
1 0
(c) Compute the pseudo-inverse of A (the Moore-Penrose pseudo-inverse) Leave in factored

form.

(d) Find the minimal-length least-squares solution of the problem

1
Az =b=1 0 |.
1




Solution:

(a)

Any m x n matrix can be decomposed as
A=UXV",

where U is an m X m unitary matrix, V' is an n X n unitary matrix and X is an m X n
diagonal matrix containing the singular values of A. Denote them as

012> 09 >

.0, >0

Assume that U and V' have been constructed so the singular values are ordered as above.
Let r be the smallest index for which o, > 0. Then r is the rank of A.

The columns of V' are the right singular vectors of A and the columns of U are the left
singular vectors of A. The columns of U corresponding to nonzero singular values span
R(A) while the columns of U corresponding to zero singular values span N (A*). The
columns of V' corresponding to nonzero singular values span the R(A*) while the columns
of V that correspond to zero singular values span N (A). That is

R(A) = span{u;, uy, ..., U}
N(AY) = span{uy, Uiy, Up}
R(A") = span{v;,vy,...,0,}

N(A) = span{u,, t,q,. .. Uy}

The singular values of A are the square roots of the eigenvalues of A*A. The right
singular vectors of A are the eigenvectors of A*A. We have

sq (90
s (30)
which implies that o = 3,09 = V/2,

(1) = (1)

The left singular vectors can be found as the image of the right singular vectors

oju; = Agj.



This yields
2/3 1/v2
up = | 2/3 Uy = _1/\/5
1/3 0
The third left singular vector is the null space of A*, which yields
1/V18
Uz = 1/\/1_8
—4//18

Putting this all together we have

2/3 1/vV2 1/V/181[3
A=|2/3 —1/V2 1/@] {0
0

1/3 0 —4/V18

[ ]

(c) The pseudo-inverse is found by inverting all of the nonzero singular values. That is
Al = ViU

where ©T contains the reciprocals of the nonzero singular values. This yeilds

2/3  1/vV2  1/V18
(1 ol[13 0 o0
AT_[O 1H0 1/v/2 o”?g —1/0\/5 Z\/\E_Z]

(d) The minimal length least-squares solution can be found by multiplying the righ side, b,
by the pseudo-inverse. This yields

- (1)

A perhaps easier solution is to note that, when A is of full rank,

ATz(A*A)_lA*:<1(/)9 1?2)@ —21 tl))

Applying this to b yields the same result.



3. Eigenvalues Define the k£ x k tridiagonal matrix

Cay by -
Co Qa9 bg
Ty, = c3 as
b
L Cr QA J

The characteristic polynomial of T} is given by pg(\) = det(A — T}).

(a) Define pi(A) in terms of pr_1(\) and pg_a(A).

(b) Show that if ¢;b; > 0 for j = 2,...,k, then p;(\) = 0 has only real roots. (Hint: find a
real similarity transformation that symmetrizes T}.)

(c) Assume ¢;b; > 0 for j = 2,...,k and assume that the roots of py_»(\) separate the
roots of pr_1(A), that is, between each adjacent pair of roots of py_1(\), there is a root
of pr_o(A). Prove that the roots of px_1()\) separate the roots of pi(A). (Hint: draw a
picture and use the recursion.)




Solution:

(a)

(b)

Expanding the last column of det(AI — Ty) yields
PE(A) = (A — ag)pr—1(\) — brckpr—2(N).

Let r;, = Ubj/Cj, dl = 1.0 and dj = Tjdj—l fOI'j > 1. Define the matrix D, =
diag(dy,---,d;,---,dg). This yields

vV bQCQ a9 vV b303
DkaDk_l = vV b303 as
e T Vb
L Vbrcy ag |

Denote the roots of py(\) by )\{ < )\g, < /\ﬁ. Using the recursion derived above we
see that

PN = —brerpr—o (NS

PN = —brapr—2 (A7)

Since the roots of py_2(\) separate the roots of p_1 (), we have py_a (XY™ )pr_o (A5 1) <0
and conclude that pg(\) must have at least one root between each root of pj_1(\).

Since each py()\) is monic and AF~1 is greater than all the roots of pr_»()\), then we may
conclude that pp_o(A¥~1) > 0. Consider the equation

Pe(NZ1) = —beckpe—2(AZ1) < 0.

Since py () is also monic, this implies that pj(\) has a root greater than A\f~1. A similar
argument shows the p;(A) has a root less than Ay~

Thus, the roots of py_1(\) separate the roots of pg(\).




(@)
(b)
()

(d)

Root Finding

Write down Newton's method for approximating the square root of a positive ncimber
Find a simple recursion relation for the erer=x, - ,/C ,

Prove, using the recursion from part (b), that

0] If Xo>.c, the sequence;, (n=0, 1, 2, ... ) will monotonically decrease.fo

(i)  The convergence will be quadratic as the limit is approached,

Describe what happens to the sequence of iterates if we start with amyairtotied value forxy
(either positive or negative).




Solution:

(@)

(b)

()

(d)

Applying Newton's method tb(x) =x>—-c  gives
f(xn) _ X2 — C_ ( )
X ):

Xn+1 = Xn — f/(Xn) Xn— 2Xn

The errorise, =x,— J/C , ., =e,+,/C . Substituting this into the Newton iteration formula gives

€1 +.,/C = —(en +/C + J_J which simplifies to eps1 = 1 f”
, e
(1) If en>0, thenen = v G >0 (since all components of the RHS are > 0). The error
n

1€ _1e _1

2ot J_ 56— 26 implying that the error decreases

cannot change sign. Alsey =
monotonically to zero.

2

1
20+/_

(i)  Whene, is sufficiently smallen. ~ =0(e?) .

We have already discussed the case JE
In cased < xp < /C , therx; = (xo + ) and, subtractinE  from both sides,

Jc = 1(xo 2/c + )8)) (/_ /Xo ) >0.Hencex; > ,/c , and we are back to the case

above
Finally, if xo <0, the iteratiorn. = %(xn + X%) will return a sequence that is exactly the sarife

Xo > 0, but with the sign for every element reversed (i.e. convergencgdo ).



5. ODE
The Forward Euler (FE) method for solving

y'(t) = f(t, y(), ¥(to) =Yo (5.1)
uses for each step the first two terms of its Taylor expansion, i.e.

y(t +h) = y(t) + hf(t, y(t)). (5.2)
TheTaylor Series Method generalizes (5.2) to include further terms in the expansion

y(t+h) =co+cih+cah?+cshd+... +c,h" (+O(h™1)). (5.3)
The main interest in the Taylor series method arises when one wants extighealyders of accuracy
(typically in the range of 10-40). There are three main ways to determine (inte@ayxthe constants
Co, C1, C2,... Many numerical text books consider only the first procedure listed below (and then
dismiss the Taylor approach as generally impractical, since the number ®htenmthan doubles by

each iteration):

Procedure 1: Differentiate (5.1) repeatedly to obtain

f
f2 azf

ORIRCRT
6y2 atay ot oy

and then usey = y®(t)/k!

y/
y/ !
y"

Consider next the special case of (5))=1t2 +y?2. Find the first three coefficignts, c;  rtingsta
from a general point by means of the approaches suggested in parts (a) - (c) below. (Needless to say,
you should get the same answer in all three cases)

(@) UseProcedure 1, as described above.
(b) UseProcedure 2: Note that (5.1) implies

dy(t+h
% —f(t+h,y(t +h)). (5.5)

Substitute some leading part of (5.3) into (5.5) and equate coefficients.

(c) UseProcedure 3: Note that the first term of (5.3) is known. After that, each time a truncated
version of (5.3) is substituted into the right hand side (RHS) of (5.5) and integrated, one gains
an additional correct term.

(d) Derive the equation that describes the stability domain for the Taylor sexiked of orden.
Do you, by any chance, recognize these equations from somewhere else, in the spemél cas
n=1,2, 3,47




Solution:

(@)

(b)

(©)

of

Immediate use of’ =f,y" = f% +5 gives
y(t+h) =y(t) + h(t2 +y(H)?) + 3h?((t2 + y(©)>)2y(t) + 2t) = y(t) + h(t? + y(1)?) + h2((t2 + y(O)D)y(t) +1).

Substituting the expressigft + h) =co +cith+ch? +... i Gyt +h) =f(t+h,y(t+h)) gives

dh
ci+2hca+...=(t+h)2+(y(t) +cih+...)2
Equate constant:  c¢; =t2 +y(t)?
Equateh: 2C; =2t +2yc1 = Cp =t +y(t)(t2 +y(t)?).
Therefore (again): y(t +h) = y(t) + h(t? + y(t)?) + h2((t? + y(t)?)y(t) +1).
Start b ~ dyt+h) _ ~ 2 2 i
y y(t +h) = y(t). Thend—h =f(t+h,y(t+h)) = (t+h)*+y(t), implying

y(t +h) = const + t?h +y(t)?h where the integration constaotnst = y(t).

Next step: W ~ (t+h)2 + (y(t) + h(t? + y(t)?))2. After integrating with respect toand

setting const = y(t) , we get
y(t+h) ~ const + t2h+y(t)?h +h2t+ h2y()(t* +y(t)%) = y(O) +h(t? +y(t)2) + h((t> + YO *)y(t) +1).

Comment: At first glance, it may appear that the first approach was thstéasmaplement and the last

(d)

approach the most difficult. Truth is exactly the opposite - the last approach caw bsuall
implemented very directly in purely numerical codes (mainly just some deaffic
recursions), and it is easily allows any number of coefficients to be calculayeeffeetively.
The number of terms in the first approach grows horrifically with increasingsorder

A stability domain is obtained by considering the OQE= iy and then determining for \Wied va
of h it features no growing solutions. Since the leading Taylor expansion becomegtbat of
analytical solutiory(t) =c-e*!, we get

y(t+h) =y(t) [1+2h+ ()2 + . + T (Zh)" .
By convention, one callsh=¢ |, and the condition for no grdyth h)| < [y(t)| becomes

|1+ &+ 582+ L+ e <1,
We may recognize this relation fo=1,2,3,4 as exactly the same one as is obtained when
determining the stability domain for anystage explicit Runge-Kutta methods of order
(n=1,2,3,9.

Comment: For linear multistep methods (which technically also can give @tyréigh orders of

accuracy), the stability domains shrink so quickly with increasing orders thdig¢besne
impractical. For Taylor series methods, on the other hand, the stability domaiasénicre
size with the order.



6. PDE

The standard second order finite difference approximation to the QD& = f(X) can schlynatic
be written as

[1-2 ) u/h? =[1]f+O(h?) (6.1)
€)) Verify that the approximation
[1-2 1Ju/h? =[1 10 1 f/12+0O(h%) (6.2)

indeed is fourth order accurate.

The 2-D counterparts to (6.1) and (6.2) for approximating the Poisson eqti%[ierﬁ;—g =f(x,y) are
1
1 -4 1 |35 =[1f +O(h?) (6.3)
1]
and
1 41 1 ¢
u _
4 -20 4 Bz = 1 81 15 +0(h%), (6.4)
1 41 1
respectively.

(b) Sketch the structure and give the entries of the linear system that is obtaeredievuse (6.4)
to solve a Poisson equation with Dirichlet boundary conditions on the square domain

[0, %[O, 1]].
(© In the case whefi(x,y) =0 (i.e. solving Laplace's equation), we would expect from (6.3) and
(6.4) that
1
1 -41 % = 0(h?) (6.5)
1
and
1 41
4 -20 4 ﬁ = O(h?). (6.6)
1 4 1]
This is correct for (6.5) but (remarkably), the accuracy of (6.6) now junPgf). Without

working through the details, outline an approach for verifying this increased order @fcyccur




Solution:

(@)

(b)
(€)

Taylor expansion aroundgives

[1-2 1wh?-[110 Jf/12 = {u(x—h) — 2u(X) + u(x + )} /h2 = {f (x— h) + 10f (X) + f (x + h)} /12 =
{u"() +15h2u@(x) + O(h")} —{f(x) +5h?"(x) + O(h*)}.

With u” =f, it also holds thau® =f" . Therefore, the expression above reduC¢s*jo

See next page.

Similar to part a, immediate Taylor expansion would give

1 41
4 -20 4 %=A+ Bh2+Ch*+Dheé +...
1 41

where each of the expressioAsB, C, D, ... would be partial derivative operators, applied & the
origin. For the stated result to hold, it would be required that

(02 22
A= (6x2 * 0y2) u
A2 2 .
and that the operators fBrandC both can be factored so that a fa{@; + %) emerges. This
would ensure they evaluate to zero Whenewmtisfies% + g—i‘; =0.

If one really works this out, it will transpire that:
2 a2
A= (gxz + 60_)/2) u,

— (Lo 1 0o 1N, —_L(2 o?

B=-% o to Ax20y?2 1o 6y4)u =1\ T a2z ) U

C__166 1" 1 2" 1a_6u__1a_44a4 Fod 8_2+62u
- 360 ox6 72 ox4oy? 72 ox20y4 360 oy6 ~ 360\ ox4 Ox20y2 oy4 )\ ox2 oy? ’

proving the result.
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