
Numerical Analysis Preliminary Exam

August 15, 2011

Solutions



1. Quadrature

The Chebyshev polynomials of the second kind are defined as

Un(x) =
1

n+ 1
T ′n+1(x), n ≥ 0,

where Tn+1(x) is the Chebyshev polynomial of the first kind.

(a) Using the form Tn(x) = cos(nθ), x = cos(θ), x ∈ [−1, 1], derive a similar expression
for Un(x).

(b) Show that the Chebyshev polynomials of the second kind satisfy the recursion

U0(x) = 1

U1(x) = 2x

Un+1(x) = 2xUn(x)− Un−1

(c) Show that the Chebyshev polynomials of the second kind are orthogonal with respect to
the inner product

< f, g >=
∫ 1

−1
f(x)g(x)

√
1− x2dx.

(d) Derive the 3 point Gauss Quadrature rule for the integral

I3(f) =
3∑
j=1

wjf(xj) =
∫ 1

−1
f(x)
√

1− x2dx+ E3(f),



Solution:

(a) Using the expression Tn(x) = cos(nθ), x = cos(θ), x ∈ [−1, 1], we have

T ′n+1(x) = −(n+ 1) sin((n+ 1)θ)
dθ

dx
= (n+ 1)

sin((n+ 1)θ)

sin(θ)
,

which yields

Un(x) =
sin((n+ 1)θ)

sin(θ)
, x = cos(θ), x = [−1, 1].

(b) The first two terms are found by definition. The recursion is established by noting

Un+1(x) + Un−1(x) =
sin((n+ 2)θ)

sin(θ)
+

sin((n)θ)

sin(θ)

=
sin(((n+ 1) + 1)θ)

sin(θ)
+

sin(((n+ 1)− 1)θ)

sin(θ)

= 2 cos(θ)
sin((n+ 1)θ)

sin(θ)
= 2xUn(x).

Substituting x = cos(θ) yields the result.

(c) Unsing the trig substitution, x = cos(θ), we have

< Un, Um > =
∫ 1

−1
Un(x)Um(x)

√
1− x2dx

=
∫ π

0

sin((n+ 1)θ)

sin(θ)

sin((m+ 1)θ)

sin(θ)
sin2(θ)dθ

=
∫ π

0
sin((n+ 1)θ) sin((m+ 1)θ)dθ

= 0 for n 6= m.

(d) The quadrature points are the roots of U3(x) = 0, which can be found either using the
recursion to derive U3(x) = 8x3 − 4x or by setting sin(4θ) = 0 which yields θj = kπ/4
for j = 1, 2, 3. The result is

x1 = −1/
√

2, x2 = 0, x3 = 1/
√

2

The weights can be found by appealing to symmetry to imply w1 = w3. We also have

w1 + w2 + w3 =
∫ 1

−1

√
1− x2dx =

∫ π

0
sin2(θ)dθ = π/2



and

w1x
2
1 + w3x

2
3 =

w1

2
+
w3

2
= w1 =

∫ 1

−1
x2
√

1− x2dx =
∫ π

0
sin2(θ) cos2(θ)dθ

=
∫ π

0

1− cos2(2θ)

4
dθ =

∫ π

0

1 + cos(4θ)

8
dθ = π/8.

Finally, this yields w1 = π/8, w2 = π/4, w3 = π/8



2. Linear Algebra

(a) Descibe the singular value decomposition (SVD) of the m × n matrix A. Include an
explanation of the rank of A and how the SVD relates to the four fundamental subspaces

R(A) Range of A R(A∗) Range of A∗

N (A) Nullspace of A N (A∗) Nullspace of A∗

(b) Perform the SVD on the matrix

A =

 2 1
2 −1
1 0


(c) Compute the pseudo-inverse of A (the Moore-Penrose pseudo-inverse) Leave in factored

form.

(d) Find the minimal-length least-squares solution of the problem

Ax = b =

 1
0
1

 .



Solution:

(a) Any m× n matrix can be decomposed as

A = UΣV ∗,

where U is an m ×m unitary matrix, V is an n × n unitary matrix and Σ is an m × n
diagonal matrix containing the singular values of A. Denote them as

σ1 ≥ σ2 ≥ . . . σn ≥ 0

Assume that U and V have been constructed so the singular values are ordered as above.

Let r be the smallest index for which σr > 0. Then r is the rank of A.

The columns of V are the right singular vectors of A and the columns of U are the left
singular vectors of A. The columns of U corresponding to nonzero singular values span
R(A) while the columns of U corresponding to zero singular values span N (A∗). The
columns of V corresponding to nonzero singular values span theR(A∗) while the columns
of V that correspond to zero singular values span N (A). That is

R(A) = span{u1, u2, . . . , ur}
N (A∗) = span{ur, ur+1, . . . , um}
R(A∗) = span{v1, v2, . . . , vr}
N (A) = span{ur, ur+1, . . . , un}

(b) The singular values of A are the square roots of the eigenvalues of A∗A. The right
singular vectors of A are the eigenvectors of A∗A. We have

A∗A =

(
9 0
0 2

)

which implies that σ1 = 3, σ2 =
√

2,

v1 =

(
1
0

)
v2 =

(
0
1

)

The left singular vectors can be found as the image of the right singular vectors

σjuj = Avj.



This yields

u1 =

 2/3
2/3
1/3

 u2 =

 1/
√

2

−1/
√

2
0


The third left singular vector is the null space of A∗, which yields

u3 =

 1/
√

18

1/
√

18

−4/
√

18


Putting this all together we have

A =

 2/3 1/
√

2 1/
√

18

2/3 −1/
√

2 1/
√

18

1/3 0 −4/
√

18


 3 0

0
√

2
0 0

 [ 1 0
0 1

]

(c) The pseudo-inverse is found by inverting all of the nonzero singular values. That is

A† = V Σ†U∗

where Σ† contains the reciprocals of the nonzero singular values. This yeilds

A† =

[
1 0
0 1

] [
1/3 0 0

0 1/
√

2 0

]  2/3 1/
√

2 1/
√

18

2/3 −1/
√

2 1/
√

18

1/3 0 −4/
√

18


(d) The minimal length least-squares solution can be found by multiplying the righ side, b,

by the pseudo-inverse. This yields

x = A†b =

(
1/3
1/2

)
.

A perhaps easier solution is to note that, when A is of full rank,

A† = (A∗A)−1A∗ =

(
1/9 0
0 1/2

)(
2 2 1
1 −1 0

)

Applying this to b yields the same result.



3. Eigenvalues Define the k × k tridiagonal matrix

Tk =



a1 b2
c2 a2 b3

c3 a3
. . .

. . . . . . bk
ck ak

 .

The characteristic polynomial of Tk is given by pk(λ) = det(λI − Tk).

(a) Define pk(λ) in terms of pk−1(λ) and pk−2(λ).

(b) Show that if cjbj > 0 for j = 2, . . . , k, then pk(λ) = 0 has only real roots. (Hint: find a
real similarity transformation that symmetrizes Tk.)

(c) Assume cjbj > 0 for j = 2, . . . , k and assume that the roots of pk−2(λ) separate the
roots of pk−1(λ), that is, between each adjacent pair of roots of pk−1(λ), there is a root
of pk−2(λ). Prove that the roots of pk−1(λ) separate the roots of pk(λ). (Hint: draw a
picture and use the recursion.)



Solution:

(a) Expanding the last column of det(λI − Tk) yields

pk(λ) = (λ− ak)pk−1(λ)− bkckpk−2(λ).

(b) Let ri =
√
bj/cj, d1 = 1.0 and dj = rjdj−1 for j > 1. Define the matrix Dk =

diag(d1, · · · , dj, · · · , dk). This yields

DkTkD
−1
k =



a1

√
b2c2√

b2c2 a2

√
b3c3

√
b3c3 a3

. . .
. . . . . .

√
bkck√

bkck ak

 .

(c) Denote the roots of p`(λ) by λ`1 < λ`2, . . . , < λ``. Using the recursion derived above we
see that

pk(λ
k−1
j ) = −bkckpk−2(λ

k−1
j )

pk(λ
k−1
j+1) = −bkckpk−2(λ

k−1
j+1)

Since the roots of pk−2(λ) separate the roots of pk−1(λ), we have pk−2(λ
k−1
j )pk−2(λ

k−1
j+1) < 0

and conclude that pk(λ) must have at least one root between each root of pk−1(λ).

Since each p`(λ) is monic and λk−1
k−1 is greater than all the roots of pk−2(λ), then we may

conclude that pk−2(λ
k−1
k−1) > 0. Consider the equation

pk(λ
k−1
k−1) = −bkckpk−2(λ

k−1
k−1) < 0.

Since pk(λ) is also monic, this implies that pk(λ) has a root greater than λk−1
k−1. A similar

argument shows the pk(λ) has a root less than λk−1
1 .

Thus, the roots of pk−1(λ) separate the roots of pk(λ).



4. Root Finding

(a) Write down Newton's method for approximating the square root of a positive number c .

(b) Find a simple recursion relation for the error  , en = xn − c

(c) Prove, using the recursion from part (b), that 
(i) If  , the sequence  xn  (n = 0, 1, 2, ... ) will monotonically decrease to . x0 > c c
(ii) The convergence will be quadratic as the limit is approached,

(d) Describe what happens to the sequence of iterates if we start with an arbitrary initial value for x0

(either positive or negative).

_________________________________________________________________________________



Solution:

(a) Applying Newton's method to    givesf (x) = x2 − c

xn+1 = xn −
f (xn)
f ∏(xn) = xn − xn

2 − c
2xn

= 1
2 xn + c

xn
.

(b) The error is  , i.e. . Substituting this into the Newton iteration formula gives  en = xn − c xn = en + c

, which simplifies to   .en+1 + c = 1
2 en + c + c

en + c
en+1 = 1

2
en

2

en + c

(c) (i) If  ,  then  (since all components of the RHS are > 0). The erroren > 0 en+1 = 1
2

en
2

en + c
> 0

cannot change sign.  Also, , implying that the error decreasesen+1 = 1
2

en
2

en + c
< 1

2
en

2

en
= 1

2en

monotonically to zero.

(ii) When  is sufficiently small, .en en+1 l
1
2

en
2

0 + c
= O(en

2)

(d) We have already discussed the case . x0 > c

In case , then   and, subtracting  from both sides, 0 < x0 < c x1 = 1
2 x0 + c

x0
c

 Hence, , and we are back to the casex1 − c = 1
2 x0 − 2 c + c

x0
= 1

2 x0 − c
x0

2

> 0. x1 > c

above.

Finally, if  , the iteration  will return a sequence that is exactly the same as if x0 < 0 xn+1 = 1
2 xn + c

xn

, but with the sign for every element reversed (i.e. convergence to ).x0 > 0 − c



5. ODE

The Forward Euler (FE) method for solving 

(5.1)y ∏(t) = f (t,y(t)), y(t0) = y0

uses for each step the first two terms of its Taylor expansion, i.e. 

(5.2)y(t + h) = y(t) + h f (t,y(t)).

The Taylor Series Method generalizes (5.2) to include further terms in the expansion

(5.3)y(t + h) = c0 + c1h + c2h2 + c3h3 +¢ + cnhh (+O(hn+1)).

The main interest in the Taylor series method arises when one wants extremely high orders of accuracy
(typically in the range of 10-40). There are three main ways to determine (in each step) the constants 

 Many numerical text books consider only the first procedure listed below (and thenc0, c1, c2,¢
dismiss the Taylor approach as generally impractical, since the number of terms more than doubles by
each iteration):  

Procedure 1: Differentiate (5.1) repeatedly to obtain

  y ∏ = f
(5.4)y ∏∏ = f Øf

Øy + Øf
Øt

y ∏∏∏ = f 2 Ø2f
Øy2 + f Øf

Øy

2
+ 2 Ø

2f
ØtØy + Ø2f

Øt2 + Øf
Øt
Øf
Øy

....
and then use ck = y(k)(t)/k!

Consider next the special case of (5.1)    Find the first three coefficients  , startingy ∏ = t2 + y2. c0, c1, c2

from a general point  t  by means of the approaches suggested in parts (a) - (c) below. (Needless to say,
you should get the same answer in all three cases)

(a) Use Procedure 1, as described above.

(b) Use Procedure 2: Note that (5.1) implies

.  (5.5)
d y(t + h)

dh = f (t + h,y(t + h))

Substitute some leading part of (5.3) into (5.5) and equate coefficients.

(c) Use Procedure 3: Note that the first term of (5.3) is known. After that, each time a truncated
version of (5.3) is substituted into the right hand side (RHS) of (5.5) and integrated, one gains
an additional correct term.

(d) Derive the equation that describes the stability domain for the Taylor series method of order n.
Do you, by any chance, recognize these equations from somewhere else, in the special cases of 

 n = 1, 2, 3, 4 ?
__________________________________________________________________________________ 



Solution:

(a) Immediate use of   givesy ∏ = f, y ∏∏ = f Ø f
Øy + Ø f

Ø t

y(t + h) = y(t) + h(t2 + y(t)2) + 1
2 h2((t2 + y(t)2)2y(t) + 2t) = y(t) + h(t2 + y(t)2) + h2((t2 + y(t)2)y(t) + t).

(b) Substituting the expression  into  givesy(t + h) = c0 + c1h + c2h2 +¢
d y(t + h)

dh = f (t + h,y(t + h))
c1 + 2h c2 +¢ = (t + h)2 + (y(t) + c1h +¢)2.
Equate constant: c1 = t2 + y(t)2

Equate h: 2c2 = 2t + 2y c1 e c2 = t + y(t)(t2 + y(t)2).
Therefore (again): y(t + h) = y(t) + h(t2 + y(t)2) + h2((t2 + y(t)2)y(t) + t).

(c) Start by Then , implyingy(t + h) l y(t).
d y(t + h)

dh = f (t + h,y(t + h)) l (t + h)2 + y(t)2

  where the integration constant  y(t + h) l const + t2h + y(t)2h const = y(t).

Next step:  After integrating with respect to h and
d y(t + h)

dh l (t + h)2 + (y(t) + h(t2 + y(t)2))2.

setting   , we getconst = y(t)
y(t + h) l const + t2h + y(t)2h + h2t + h2y(t)(t2 + y(t)2) = y(t) + h(t2 + y(t)2) + h2((t2 + y(t)2)y(t) + t).

Comment: At first glance, it may appear that the first approach was the easiest to implement and the last
approach the most difficult. Truth is exactly the opposite - the last approach can usually be
implemented very directly in purely numerical codes (mainly just some coefficient
recursions), and it is easily allows any number of coefficients to be calculated very effectively.
The number of terms in the first approach grows horrifically with increasing orders.

(d) A stability domain is obtained by considering the ODE    and then determining for what valuesy ∏ = �y
of    it features no growing solutions. Since the leading  Taylor expansion becomes that of theh
analytical solution  we gety(t) = c $ e� t,

.y(t + h) = y(t) 1 + �h + 1
2! (�h)2 +¢ + 1

n! (�h)n

By convention, one calls , and the condition for no growth  becomes �h = � |y(t + h)|[ |y(t)|

.1 + � + 1
2!�

2 +¢ + 1
n! �

n [ 1

We may recognize this relation for  as exactly the same one as is obtained whenn = 1, 2, 3, 4
determining the stability domain for any n-stage explicit Runge-Kutta methods of order n 

.(n = 1, 2, 3, 4)

Comment: For linear multistep methods (which technically also can give extremely high orders of
accuracy), the stability domains shrink so quickly with increasing orders that they become
impractical. For Taylor series methods, on the other hand, the stability domains increase in
size with the order.



6. PDE

The standard second order finite difference approximation to the ODE   can schematicallyu ∏∏(x) = f (x)
be written as 

(6.1)[1 − 2 1] u/h2 = [1] f + O(h2)

(a) Verify that the approximation

(6.2)[1 − 2 1] u/h2 = [1 10 1] f /12+ O(h4)

indeed is fourth order accurate.

The 2-D counterparts to (6.1) and (6.2) for approximating the Poisson equation   areØ2u
Øx2 + Ø2u

Øy2 = f (x,y)

(6.3)
1

1 −4 1
1

u
h2 = [1] f + O(h2)

and

, (6.4)
1 4 1
4 −20 4
1 4 1

u
6h2 =

1
1 8 1

1

f
12 + O(h4)

respectively.

(b) Sketch the structure and give the entries of the linear system that is obtained when we use (6.4)
to solve a Poisson equation with Dirichlet boundary conditions on the square domain 
[0, 1] % [0, 1].

(c) In the case when   (i.e. solving Laplace's equation), we would expect from (6.3) andf (x,y) h 0
(6.4) that 

(6.5)
1

1 −4 1
1

u
h2 = O(h2)

and

. (6.6)
1 4 1
4 −20 4
1 4 1

u
6h2 = O(h4)

This is correct for (6.5) but (remarkably), the accuracy of (6.6) now jumps to  WithoutO(h6).
working through the details, outline an approach for verifying this increased order of accuracy.

__________________________________________________________________________________



Solution:

(a) Taylor expansion around x gives
[1 − 2 1] u/h2 − [1 10 1] f /12 = {u(x − h) − 2u(x) + u(x + h)}/h2 − {f (x − h) + 10f (x) + f (x + h)}/12 =
{u ∏∏(x) + 1

12h2u(4)(x) + O(h4)} − {f (x) + 1
12h2f ∏∏(x) + O(h4)}.

With  it also holds that  . Therefore, the expression above reduces to  .u ∏∏ = f, u(4) = f ∏∏ O(h4)

(b) See next page.

(c) Similar to part a, immediate Taylor expansion would give
1 4 1
4 −20 4
1 4 1

u
6h2 = A + B h2 + C h4 + D h6 + ...

where each of the expressions  A, B, C, D, ... would be partial derivative operators, applied to u at the
origin. For the stated result to hold, it would be required that

A = Ø2

Øx2 + Ø2

Øy2 u

and that the operators for B and C both can be factored so that a factor  emerges. ThisØ2

Øx2 + Ø2

Øy2

would ensure they evaluate to zero whenever u satisfies .Ø2u
Øx2 + Ø2u

Øy2 = 0

If one really works this out, it will transpire that:

  ,A = Ø2

Øx2 + Ø2

Øy2 u

  ,B = − 1
12
Ø4

Øx4 + 1
6
Ø4

Øx2Øy2 + 1
12
Ø4

Øy4 u = − 1
12

Ø2

Øx2 + Ø2

Øy2

2
u

 ,C = − 1
360

Ø6

Øx6 + 1
72

Ø6

Øx4Øy2 + 1
72

Ø6

Øx2Øy4 + 1
360

Ø6

Øy6 u = − 1
360

Ø4

Øx4 + 4 Ø4

Øx2Øy2 + Ø4

Øy4
Ø2

Øx2 + Ø2

Øy2 u

proving the result.
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