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Solutions:

1. Root Finding.

(a) Let the root be x = a. We subtract « from both sides of z,4+1 = z, — ){,((27;)) and write

_ - _ flaten) _ fla)tenf (@) +0(e3) : _
Ty —a = gy to obtain e,41 = €, — f,(afen) =g, — f’?a)JrO(sn) “u) Using f(a) = 0,

the RHS simplifies to &, — (e, + O(e2)) = O(£2).

n

(b) Let the update in the iteration step be x,11 — 2, = Ax,. We want to achieve

0= flan + 5ra) = F(an) + D (ea) + 5 (Ban) " (2a) + .. M)

Ignoring the last term and then solving for Az, gives the standard Newton iteration:
Ax, = — J{’((ZZ))' Since this is a very good approximation to the ideal Ax, , substituting
this into the last term of (1) is much better than ignoring it. Doing this and then solving
equation (1) again for Az, gives the desired formula.

2. Numerical quadrature.

(a) On each subinterval, the interpolation error in the trapezoidal approximation can (by
the error formula for polynomial interpolation, in case of a linear function) be estimated

by |£(z) — p1(z)] < ‘%ﬂ’(g)‘ — O(h?) (since both |z — x| and |z — zp41]
are of size O(h)). Over an interval length of b — a, the integration error can then be no
more than (b — a) - O(h?), which still is O(h?).

(b) In the expansion e“* = Y22, ay, cos kx, the trapezoidal rule is exact for the first (con-
stant) term and then gives the correct (zero) value for all further cosine modes until we
reach the first mode (following the constant one) that takes the value one at all the node
points. This mode gives the erroneous result of 27 - a,, which will dominate the total
error. With n = 6, the error will thus be approximately % = 71/11520 ~ 3 - 1074,



3. Interpolation/Approximation.

(a) pn(z) = Zzzo Li(z) fx, where Li(z) = (z—=20) - ...

(zr—20) - (T —T—1) (T —Th41) - (Th—Tn)

(b) Suppose there are two different polynomials p,(z) and ¢, (x) that both take the values fj
at node locations x, k = 0,1,...,n. The difference p,(x) — ¢,(x) is again a polynomial
of degree n but with n+ 1 zeros, showing that it must be identically zero, in conflict with
the assumption that p,(z) and ¢, (z) were different.

(z—zp—1) (B—Tpg1) -

(z—xn)

(¢) Each of the following three approaches will show that, for n + 1 nodes, the polynomial

(i)

(iii)

degree will be 2n + 1.

Direct solution of linear system: Let the Hermite polynomial be Hopy1(z) =
ap + a1z +asx® + ... + agonQ”H. Imposing all the 2n + 2 requirements gives a
square (2n+2) x (2n+2) linear system of the following structure for the coefficients:

1z m% x% [ oag ] [ fo ]
1 oz 2?2 L. a1 .
|
!/
0 1 2z 3a3 0
0 1 2z 3a? : .
L 1 L %2n+1 | L f;L i

Based on Lagrange interpolation: With Li(z) denoting the Legendre kernel,
the polynomials h;(z) = (x — x;)Li(x)? and hi(z) = [1 — 2L}(x;)(z — 2;)] Li(x)?
will have the properties that hi(z;) = hi(z;) = 0, 0 < 4,j < n and hy(z;) =
hi(z;) = { 0 A
1 1=y
H(x) =30 hi(®) fi + 20 i) -
Based on Newton interpolation: One can generalize the standard divided dif-
ference layout for Newton’s interpolation method by duplicating each node infor-
mation (location and function value) and in the next column insert the derivative
information. Following that, one proceeds as usual. In case of just two nodes, the
divided difference tables for regular interpolation and for Hermite interpolation
will take the forms:

. The Hermite interpolation polynomial is then given by

zo  fo
I
zo  fo zo  fo o
[ J VS. [ ] e
r1 fi r1 fi .
fi
z1 fi

where the entries marked by dots are completed in the regular manner. In either
case, the interpolation polynomial would be created from the resulting numbers
in the top right diagonal. This Hermite extension works by the principle that
each node can be seen as the limit of two nodes coming together, with function
values approaching each other in just the right way that the derivative information
becomes obeyed.



4. Linear algebra

(a) Since A is an antisymmetric matrix, its eigenvalues are purely imaginary, or zero. Since
it is a matrix with real entries, the roots of the characteristic polynomial come in pairs
(if they are complex-valued). For odd-sized matrix these two conditions force at least
one of the eigenvalues to be zero.

b) For even-sized matrix the product of a pair of complex-valued eigenvalues is always
g
positive and the conclusion follows.

(c¢) For non-zero eigenvalues the limit matrix will have a block-diagonal structure with two-
by-two block size.

5. ODEs

(a) A general multistep method with s steps to solve
y' =f(t,y)
y(0) = yo
is of the form

Z AmYn+m = h Z bmf(thrma Yner)a

m=0 m=0
n=20,1,2,... , where ag = 1. For the test problem
y = Xy
y(0) = o,

consider solutions to the recurrence

S S

> amYnim =A0D_ bnynim, n=0,1,2,...

m=0 m=0
The region of absolute stability of a method is a domain Ah € D C C such that the
solution of the corresponding linear recurrence is bounded.
The method is stable if zero belongs to the region of absolute stability
Replacing all computed values y,, by the values of the solution y(¢,) and using the ODE
to evaluate local error, we define the order of the method as p > 1 (if it exists) such that

zsj amy(t +mh) —h Z bmy'(t +mh) = O(RP*)

as h — 0. In fact, for a multistep method, one can find the order by taking y to be a
polynomial and finding the largest degree for which

S S
Z amy(t +mh) —h Z by’ (t +mh) = 0.
m=0 m=0
The method is consistent if its order p > 1. These easily verified algebraic properties
of the method, namely its consistency and stability, imply its convergence (a property
which otherwise requires a fairly lengthy derivation).



(b) For an explicit multistep method, the equation for the roots of the characteristic poly-
nomial has the form

¢(u) = u® + lower order terms = 0.

Since the polynomial can be written in terms of its roots as

ou) = (u—up)(u—ug)...(u—us),

and in the region of absolute stability all roots |ux| < 1, we conclude that, in that region,
all coefficients of the polynomial ¢ are bounded (independently of Ah). However, if the
region of absolute stability is unbounded, then some of the coefficients of ¢ will become
arbitrarily large since they exhibit linear dependence on A\h.

6. PDEs

Lax-Wendroff method is second order in both space and time variables. To see that, we write

n+1 n n ™ 7 i i
YT M e Ly U 2
Iy 2N 2 &
and consider
t+ hyy ) — ult b2t he) —ulh, 2~ ha
Sltr) = WEHhen) —ut2) | ult+he) —ult,z - h)
I, 2h
Ly ult ot ) = 2ult o) +u(tw — h)
20 t h2 .
We have t+h t 1
u( + hy, l‘) — u( ’x) = up + —uphy + O(h?)
hi 2
t ha: —u(t,r — h:c
u(t, + hy) — 2u(t, ) + ult,z — h)
2 = s (t,2) + O(h2).
and obtain

1 1
V(t,2) = w o+ Sunh + cuy(t, @) - 5c2ug[,,gg(1t, x)h + O(h?) + O(h2).
From the equation, we have

1
Uy = ——u and Ugy = U,
C C

so that
1 1 2 2 2 2
w(t, x) = Ut + iuttht — Ut — §uttht + O(ht) + O(hz) = O(ht) + O(hx)

For stability analysis, we write the scheme as

V_L+1

U

= Auf; — Buj + Cuj_y,

4



where ) . ) 1
A= 5 (CM)Q _ ic,u, B = (CH)2 —1 and C = 5 (CM)2 + ic,u-

Using {e#*he };\Zol as an eigenvector (with index k =0,... N — 1), we compute
AeiUHDkhe _ poijkhe 4 opii—Dkha  _  gidkhs (Aeikhz B+ Ce—ikhm)

= e (1 (en)? + (ea)? cos (Khs) — icpusin (k)|

Computing the absolute value of the eigenvalue Ay = 1— (cp)*+ (cp)? cos (khy ) —icpsin (khy),
we have

A2 = [1 — (ep)? + (cp)? cos? (k:hx)] ’ + (cp)? sin? (khy)

- [1 — (c,u)2 sin? (khx)} ? + (c,u)2 sin? (khy) .

Setting @ = (cp)?, @ > 0 and = = sin® (khy), 0 < 2 < 1, as a function of z we have
(1-— aa:)2 +ax =1 — ax + a®z%. The condition a < 1 implies that

1—a:1:+a2$2§1.

Thus, we obtain stability under the CFL condition cu <1 or hy/hy < 1/c.



