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Solutions:

1. Root Finding.

(a) Let the root be x = α. We subtract α from both sides of xn+1 = xn − f(xn)
f ′(xn)

and write

xn − α = εn to obtain εn+1 = εn − f(α+εn)
f ′(α+εn)

= εn − f(α)+εnf ′(α)+O(ε2n)
f ′(α)+O(εn)

. Using f(α) = 0,

the RHS simpli�es to εn −
(
εn +O(ε2n)

)
= O(ε2n).

(b) Let the update in the iteration step be xn+1 − xn = 4xn. We want to achieve

0 = f(xn +4xn) = f(xn) +4xnf ′(xn) +
1

2
(4xn)2f ′′(xn) + . . . (1)

Ignoring the last term and then solving for 4xn gives the standard Newton iteration:

4xn = − f(xn)
f ′(xn)

. Since this is a very good approximation to the ideal 4xn , substituting

this into the last term of (1) is much better than ignoring it. Doing this and then solving

equation (1) again for 4xn gives the desired formula.

2. Numerical quadrature.

(a) On each subinterval, the interpolation error in the trapezoidal approximation can (by

the error formula for polynomial interpolation, in case of a linear function) be estimated

by |f(x) − p1(x)| ≤
∣∣∣ (x−xk)(x−xk+1)

2! f ′′(ξ)
∣∣∣ = O(h2) (since both |x − xk| and |x − xk+1|

are of size O(h)). Over an interval length of b− a, the integration error can then be no

more than (b− a) ·O(h2), which still is O(h2).

(b) In the expansion ecosx =
∑∞

k=0 ak cos kx, the trapezoidal rule is exact for the �rst (con-
stant) term and then gives the correct (zero) value for all further cosine modes until we

reach the �rst mode (following the constant one) that takes the value one at all the node

points. This mode gives the erroneous result of 2π · an, which will dominate the total

error. With n = 6, the error will thus be approximately 2π
26−16!

= π/11520 ≈ 3 · 10−4.
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3. Interpolation/Approximation.

(a) pn(x) =
∑n

k=0 Lk(x) fk, where Lk(x) =
(x−x0) · ... · (x−xk−1) (x−xk+1) · ... · (x−xn)
(xk−x0)·...·(xk−xk−1)(xk−xk+1)·...·(xk−xn) .

(b) Suppose there are two di�erent polynomials pn(x) and qn(x) that both take the values fk
at node locations xk, k = 0, 1, . . . , n. The di�erence pn(x)− qn(x) is again a polynomial

of degree n but with n+1 zeros, showing that it must be identically zero, in con�ict with

the assumption that pn(x) and qn(x) were di�erent.

(c) Each of the following three approaches will show that, for n + 1 nodes, the polynomial

degree will be 2n+ 1.

(i) Direct solution of linear system: Let the Hermite polynomial be H2n+1(x) =
a0 + a1x+ a2x

2 + . . .+ a2n+1x
2n+1. Imposing all the 2n+ 2 requirements gives a

square (2n+2)×(2n+2) linear system of the following structure for the coe�cients:

1 x0 x20 x30 . . .
1 x1 x21 x31 . . .
. . . . . .

0 1 2x0 3x20 . . .
0 1 2x1 3x21 . . .
. . . . . .





a0
a1
...

...

a2n+1


=



f0
...

fn
f ′0
...

f ′n


.

(ii) Based on Lagrange interpolation: With Lk(x) denoting the Legendre kernel,

the polynomials h̃i(x) = (x − xi)Li(x)2 and hi(x) = [1 − 2L′i(xi)(x − xi)]Li(x)2
will have the properties that h′i(xj) = h̃i(xj) = 0, 0 ≤ i, j ≤ n and hi(xj) =

h′i(xj) =

{
0 i 6= j

1 i = j
. The Hermite interpolation polynomial is then given by

H(x) =
∑n

i=0 hi(x) fi +
∑n

i=0 h̃i(x) f
′
i .

(iii) Based on Newton interpolation: One can generalize the standard divided dif-

ference layout for Newton's interpolation method by duplicating each node infor-

mation (location and function value) and in the next column insert the derivative

information. Following that, one proceeds as usual. In case of just two nodes, the

divided di�erence tables for regular interpolation and for Hermite interpolation

will take the forms:

x0 f0
•

x1 f1

vs.

x0 f0
f ′0

x0 f0 •
• •

x1 f1 •
f ′1

x1 f1

,

where the entries marked by dots are completed in the regular manner. In either

case, the interpolation polynomial would be created from the resulting numbers

in the top right diagonal. This Hermite extension works by the principle that

each node can be seen as the limit of two nodes coming together, with function

values approaching each other in just the right way that the derivative information

becomes obeyed.
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4. Linear algebra

(a) Since A is an antisymmetric matrix, its eigenvalues are purely imaginary, or zero. Since

it is a matrix with real entries, the roots of the characteristic polynomial come in pairs

(if they are complex-valued). For odd-sized matrix these two conditions force at least

one of the eigenvalues to be zero.

(b) For even-sized matrix the product of a pair of complex-valued eigenvalues is always

positive and the conclusion follows.

(c) For non-zero eigenvalues the limit matrix will have a block-diagonal structure with two-

by-two block size.

5. ODEs

(a) A general multistep method with s steps to solve{
y′ = f(t,y)

y(0) = y0

is of the form
s∑

m=0

amyn+m = h

s∑
m=0

bmf(tn+m,yn+m),

n = 0, 1, 2, . . . , where as = 1. For the test problem

y′ = λy

y(0) = y0,

consider solutions to the recurrence
s∑

m=0

amyn+m = λh
s∑

m=0

bmyn+m, n = 0, 1, 2, . . .

The region of absolute stability of a method is a domain λh ∈ D ⊂ C such that the

solution of the corresponding linear recurrence is bounded.

The method is stable if zero belongs to the region of absolute stability

Replacing all computed values yn by the values of the solution y(tn) and using the ODE

to evaluate local error, we de�ne the order of the method as p ≥ 1 (if it exists) such that

s∑
m=0

amy(t+mh)− h
s∑

m=0

bmy
′(t+mh) = O(hp+1)

as h → 0. In fact, for a multistep method, one can �nd the order by taking y to be a

polynomial and �nding the largest degree for which

s∑
m=0

amy(t+mh)− h
s∑

m=0

bmy
′(t+mh) = 0.

The method is consistent if its order p ≥ 1. These easily veri�ed algebraic properties

of the method, namely its consistency and stability, imply its convergence (a property

which otherwise requires a fairly lengthy derivation).
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(b) For an explicit multistep method, the equation for the roots of the characteristic poly-

nomial has the form

φ(u) = us + lower order terms = 0.

Since the polynomial can be written in terms of its roots as

φ(u) = (u− u1) (u− u2) . . . (u− us) ,

and in the region of absolute stability all roots |uk| ≤ 1, we conclude that, in that region,

all coe�cients of the polynomial φ are bounded (independently of λh). However, if the
region of absolute stability is unbounded, then some of the coe�cients of φ will become

arbitrarily large since they exhibit linear dependence on λh.

6. PDEs

Lax-Wendro� method is second order in both space and time variables. To see that, we write

un+1
j − unj
ht

= −c
unj+1 − unj−1

2hx
+

1

2
c2ht

unj+1 − 2unj + unj−1
h2x

and consider

ψ(t, x) =
u(t+ ht, x)− u(t, x)

ht
+ c

u(t, x+ hx)− u(t, x− hx)
2hx

− 1

2
c2ht

u(t, x+ hx)− 2u(t, x) + u(t, x− hx)
h2x

.

We have
u(t+ ht, x)− u(t, x)

ht
= ut +

1

2
uttht +O(h2t )

u(t, x+ hx)− u(t, x− hx)
2hx

= ux(t, x) +O(h2x)

u(t, x+ hx)− 2u(t, x) + u(t, x− hx)
h2x

= uxx(t, x) +O(h2x).

and obtain

ψ(t, x) = ut +
1

2
uttht + cux(t, x)−

1

2
c2uxx(t, x)ht +O(h2t ) +O(h2x).

From the equation, we have

ux = −1

c
ut and uxx =

1

c2
utt,

so that

ψ(t, x) = ut +
1

2
uttht − ut −

1

2
uttht +O(h2t ) +O(h2x) = O(h2t ) +O(h2x).

For stability analysis, we write the scheme as

un+1
j = Aunj+1 −Bunj + Cunj−1,
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where

A =
1

2
(cµ)2 − 1

2
cµ, B = (cµ)2 − 1 and C =

1

2
(cµ)2 +

1

2
cµ.

Using
{
eijkhx

}N−1
j=0

as an eigenvector (with index k = 0, . . . N − 1), we compute

Aei(j+1)khx −Beijkhx + Cei(j−1)khx = eijkhx
(
Aeikhx −B + Ce−ikhx

)
= eijkhx

[
1− (cµ)2 + (cµ)2 cos (khx)− icµ sin (khx)

]
Computing the absolute value of the eigenvalue λk = 1−(cµ)2+(cµ)2 cos (khx)−icµ sin (khx),
we have

|λk|2 =
[
1− (cµ)2 + (cµ)2 cos2 (khx)

]2
+ (cµ)2 sin2 (khx)

=
[
1− (cµ)2 sin2 (khx)

]2
+ (cµ)2 sin2 (khx) .

Setting a = (cµ)2, a > 0 and x = sin2 (khx), 0 ≤ x ≤ 1, as a function of x we have

(1− ax)2 + ax = 1− ax+ a2x2. The condition a ≤ 1 implies that

1− ax+ a2x2 ≤ 1.

Thus, we obtain stability under the CFL condition cµ ≤ 1 or ht/hx ≤ 1/c.
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