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Preliminary Examination in Numerical Analysis

January, 2017

1. Root Finding.

The roots are -1,0,1. (a) First consider x0 > 1. Let xn+1 = 1 + ε and xn = 1 + δ with

δ > 0. The iteration gives 0 < ε
δ < 2

3 , which implies that 1 < xn+1 < xn. Newton's

method will converge monotonically to 1. Next consider 1/
√

3 < x0 < 1. As the signs of

the numerator and denominator in the rational part of the iteration does not change on the

interval under consideration we �nd that x1 > 1. Finally, x0 = 1 produces x1 = 1. Note that
an iteration starting at 1/

√
3 < x0 < 1 is not monotonic since it �rst moves up past x = 1

then monotonically decreases back towards 1.

To answer (b), rewrite the iteration as xn+1 = − 2x3n
1−3x2n

, and note that for 0 ≤ x0 < 1/
√

3 the

next iterate will be non-positive. Insisting that −x0 < x1 ≤ 0, so that x1 will be closer to

zero than x0 gives the limiting case x1 = −x0, or α(1− 3α2) = −2α3, which has the solution

α = 1/
√

5. Furthermore, whenever |xn| < 1/
√

5 one �nds that |xn+1| < |xn| so the sequence

of absolute values decreases monotonically and must converge, the only possible limit being

0.

Finally, for (c) we may consider the case f
′′
(x) > 0 (otherwise consider −f(x) = 0). Assume

�rst that f ′(x) > 0 in the interval, f(x0) ≥ 0 by assumption. The situation is as the one

pictured in Figure 1 and we thus conclude that x1 < x0 and that since the tangent lies to the

right of the curve it is also true that α > x1. The case f
′(x) < 0 is handled similarly and the

results follows by induction.

2. Numerical quadrature.
The error in the trapezoid rule over a single interval is∫ b

a
f(x)dx =

b− a
2

(f(b) + f(a))− (b− a)3

12
f ′′(ξ)

for some unknown ξ ∈ [a, b]. In our example f(x) = ln(x) and each interval has unit length

(from k to k + 1). The exact relationship between the integral and the composite trapezoid

rule approximation in our case is therefore∫ n

1
ln(x)dx =

1

2

n−1∑
k=1

(ln(k) + ln(k + 1)) +
1

12

n−1∑
k=1

ξ−2k

where ξk ∈ [k, k + 1]. Plugging this back in to the formula for ln(n!) we �nd

ln(n!) =

∫ n

1
ln(x)dx− 1

12

n−1∑
k=1

ξ−2k +
1

2
ln(n).
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Figure 1: Monotonicity and convexity yields monotone convergence for Newton's method.

Evaluating the integral

ln(n!) =

(
n+

1

2

)
ln(n)− n+ 1− 1

12

n−1∑
k=1

ξ−2k .

Exponentiating:

n! =
√
n(n/e)ne1−

1
12

∑n−1
k=1 ξ

−2
k .

The coe�cient in Stirling's formula is clearly

Cn = exp

{
1− 1

12

n−1∑
k=1

ξ−2k

}
.

The sum can be bounded as follows

1 ≤
n−1∑
k=1

ξ−2k ≤
n−1∑
k=1

k−2 ≤
∞∑
k=1

k−2 =
π2

6

which means that the coe�cient is bounded by

exp

{
1− π2

72

}
≤ Cn ≤ exp

{
1− 1

12

}
.

There are, in fact, sharper estimates on Cn.
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3. Interpolation/Approximation.
(a) Let W = V −1, and the the elements of W be wij . Note that WV = I, i.e. that row i
satis�es

n∑
j=1

wijx
j
k = δik, k = 1, . . . , n.

This interpolation problem is solved by li(x), that is:

li(xk) =
n∏
i=1
i 6=j

(xk − xi)
(xj − xi)

=
n∑
j=1

wijx
j
k = δik, k = 1, . . . , n,

which shows that V is non-singular if and only if xi − xj 6= 0 when i 6= j.
(b) Finding the elements wij is equivalent to �nding the coe�cients of li(x), i = 1, . . . , n.
Noting that li(x) = qi(x)/qi(xi) we must thus �nd all the coe�cients of each qi(x) in O(n)
operations. We must also evaluate qi(xi). Horner's rule can be used to carry out both tasks.

Recall that for the synthetic division of a polynomial P (x) =
∑m

l=0 αlx
l by (x− xi) we must

�nd the polynomial Q(x) =
∑m

l=1 βlx
l−1 that satis�es P (x) = (x − xi)Q(x) + β0, (with

β0 = P (xi)). A direct computation, matching the coe�cients on the sides of the equality sign,

shows that the coe�cients βk can be computed by the Horner recursion:

βk = αk + βk+1xi, k = m− 1,m− 2, . . . , 1, 0,

and βm = αm.
Applying this to Φn(x)/(x−xi) we thus may �nd the n coe�cients of each qi(x) at cost O(n).
Once the coe�cients are known n additional applications of Horner's rule yields the n scalars

qi(xi) at a cost of O(n) each.

4. Linear Algebra

We present a solution with C = uvT based on the ideas presented in the classic 1977 SIAM

Review paper Eigenproblems for Matrices Associated with Periodic Boundary Conditions by

Bjorck and Golub but note that since the rank 2 matrix is not unique other solutions are

possible. For example the choice C = e1e
T
N + eNe

T
1 will leave the tridiagonal part of the

matrix intact allowing for the possibility to exploit the diagonal dominance of the resulting

A′.

For (a) notice that
4 1 1
1 4 1

. . .
. . .

. . .

1 4 1
1 1 4

 =


0 1
1 4 1

. . .
. . .

. . .

1 4 1
1 15

4

+


4
0
...

0
1


(

1 0 · · · 0 1
4

)
.

So A′ is the tridiagonal matrix on the RHS, and u = [4, 0, . . . , 0, 1]T , v = [1, 0 . . . , 0, 1/4]. For
(b) let B = A′ and use the Sherman-Morrison-Woodbury formula

(B + uvT )−1 = B−1 − B−1uvTB−1

1 + vTB−1u
.
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Now By = g can be solved with ∼ CN cost (C is a small integer like 7 or so). To solve

Aw = f , we perform the following.

1. Solve Bz = f at ∼ CN cost.

2. Solve By = u at ∼ CN cost.

3. Compute both α = vT z and β = vTy; each dot product costs 2N − 1.
4. Form z− α(1 + β)−1y at 2N cost or so.

5. ODEs

(a) Explicit and Implicit Euler applied to the scalar problem ẋ = λx yield

xn+1 = (1 + µ)xn, (1− µ)xn+1 = xn

where µ = hλ and h is the time step size. The methods are stable when |1 + µ| ≤ 1 and

|1 − µ|−1 ≤ 1, respectively, for µ ∈ C. Explicit Euler is stable for µ in a circle of unit

radius centered at −1 in the complex plane; implicit Euler is stable for µ outside a circle

of unit radius centered at 1 in the complex plane.

(b) Explicit Euler applied to this problem yields

un+1 = un(1− hu2n).

Take absolute values:

|un+1| = |un|γn, γn = |1− hu2n|.

If γn < 1 for every n then the sequence of absolute values is monotone decreasing and

bounded below, so it must converge. γn < 1 when u2n < 2/h. Clearly, if u20 < 2/h then

u2n < 2/h for every n, so the sequence of absolute values converges. The limit must

satisfy |u∞| = |u∞|(1 − h|u∞|2) so the only possible limit is un → 0. Conversely, when
u20 > 2/h all subsequent iterates also satisfy u2n > 2/h and |un+1| > |un|; the sequence

{un} alternates sign and can't converge.

(c) Implicit Euler applied to this problem yields

un+1(1 + hu2n+1) = un.

Since the function g(u) = u + hu3 is a bijection for every h ≥ 0, the nonlinear system

g(un+1) = un has a unique solution for every h ≥ 0 and un. It's easy to see that

|un+1| < |un| for every un, so the sequence of absolute values is monotone decreasing and

bounded below, and must converge. The limit must satisfy |u∞|(1 + h|u2∞|) = |u∞|, so
the limit is limn→∞ un = 0 for every u0 and every h ≥ 0.

(d) Taylor series says

u0 = u(h) + hu(h)3 − 3h2

2
u(ξ)2

for some ξ ∈ [0, h]. The implicit Euler approximation is

u0 = u1 + hu31.

Subtracting yields

3h2

2
u(ξ)2 = (u(h)− u1)(1 + h(u(h)2 + u(h)u1 + u21)).
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Note that u(h)2 + u(h)u1 + u21 ≥ 0 for every u(h) and u1, so

|u(h)− u1| =
3h2u(ξ)2

2(1 + h(u(h)2 + u(h)u1 + u21))
≤ 3h2u(ξ)2

2
.

If you wish you can further use the fact that u(ξ)2 ≤ u(0)2. The method has second-

order truncation error. As h→∞ this bound on the truncation error also goes to∞. As

h→∞ the implicit Euler approximation satis�es u1 → 0, and so does the true solution,

so the error also goes to zero.

6. PDEs

Using the exact solution u (x− at), we have to evaluate

ψ (ht, hx) = u (xj − atn+1)− c−1u (xj−1 − atn)− c0u (xj − atn)− c1u (xj+1 − atn)

given that xj−1 = xj − hx, xj+1 = xj + hx and tn = tn+1 − ht. Denoting xj − atn+1 = s for

convenience and using the Taylor expansion, we have

u (s− hx + aht) = u (s) + u′ (s) (aht − hx) +
1

2
u′′ (s) (aht − hx)2 + . . .

u (s+ aht) = u (s) + u′ (s) aht +
1

2
u′′ (s) (aht)

2 + . . .

and

u (s+ hx + aht) = u (s) + u′ (s) (aht + hx) +
1

2
u′′ (s) (aht + hx)2 + . . .

Thus, we obtain

ψ (ht, hx) = u (s) (1− c−1 − c0 − c1)− u′ (s) [c−1 (aht − hx) + c0aht + c1 (aht + hx)]

− 1

2
u′′(s)

[
c−1 (aht − hx)2 + c0 (aht)

2 + c1 (aht + hx)2
]

+ . . .

and arrive at the linear system
c−1 + c0 + c1 = 1

c−1 (aht − hx) + c0aht + c1 (aht + hx) = 0

c−1 (aht − hx)2 + c0 (aht)
2 + c1 (aht + hx)2 = 0.

Setting

ν = a
ht
hx

we obtain

c−1 =
1

2

(
ν2 + ν

)
, c0 = 1− ν2, and c1 =

1

2

(
ν2 − ν

)
.

Assuming periodic boundary conditions, the matrix of this explicit scheme is circulant so that we

know the eigenvectors and use them to compute the eigenvalues. For the kth eigenvector e2πikhxj

we have

e2πikhx(j−1)c−1 + e2πikhxjc0 + e2πikhx(j+1)c1 = e2πikhxj
(
e−2πikhxc−1 + c0 + e2πikhxc1

)
= e2πikhxj

(
1− ν2 + ν2 cos (2πkhx) + iν sin (2πkhx)

)
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and compute the absolute value of the eigenvalues,

|λk (ν)|2 =
(
1− ν2 (1− cos (2πkhx))

)2
+ ν2 sin2 (2πkhx) .

We require

|λk|2 ≤ 1

for all k.

It is optional to show that this inequality holds if ν ≤ 1 .
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