
Numerical Analysis Preliminary Exam
10 am to 1 pm, August 20, 2018

Instructions. You have three hours to complete this exam. Submit solutions to four (and no
more) of the following six problems. Please start each problem on a new page. You MUST prove
your conclusions or show a counter-example for all problems unless otherwise noted. Do not write
your name on your exam. Write your student ID number.

Problem 1: Rootfinding

Iterative sequences very reminiscent of those arising when using Newtons method for root finding
(either for a single equation or for a system of equations) can arise also in a number of other contexts.
For exanple, if one starts with

a0 =
√

2− 1, b0 = 6− 4
√

2

and then iterates for k = 0, 1, 2, . . .

ak+1 =
1− (1− a4k)1/4

1 + (1− a4k)1/4
, bk+1 = bk(1 + ak+1)

4 − 22k+3ak+1(1 + ak+1 + a2k+1)

it will turn out that ak → 0 and bk → 1/π.

(a) In the same sense as we describe typical Newton iteration convergence as quadratic, determine
the convergence rate of each of the two sequences above.

(b) Give a rough estimate of how high we need k to be if we want the approximation for π to
become correct to over 1,000 decimal places.

Solution: (a) We consider first ak since it doesn’t depend on bk. Let ak − 0 = ε be the error
relative to the limit. Then, using the binomial theorem,

ak+1 =
1− (1− ε4)1/4

1 + (1− ε4)1/4
=

1− (1− ε4/4 +O(ε8))

1 + (1− ε4/4 +O(ε8))
=
ε4/4 +O(ε8)

2 +O(ε4)
=

1

8
ε4 +O(ε8)

With typical Newton iterations having quadratic convergence (a leading term proportional to ε2),
the leading term ε4 tells us that the convergence in this case has become quartic. The number of
correct digits becomes about four times larger with each iteration.
With this information we turn to the bk sequence. With bk approaching a constant, the update
from bk to bk+1 provided by the term bk(1 + ak+1)4 will decrease to zero at about the same rate
as ak+1 goes to zero. The second term 22k+3ak+1(1 + ak+1 + a2k+1) will go to zero at a quartic

rate as well, being proportional to ak+1. We further note that its factor 22k+3 is more than off-set
by the factor 1/8 in ak+1 = ε4/8+O(ε8). Also, the bk sequence therefore converges at a quartic rate.

(b) As a rough way to estimate the number of iterations needed to get 1,000 digit accuracy, we note
that b0 ≈ 1/3, which is correct to one digit. Then quartic convergence suggests k = 1 ⇒ 4 digits,
k = 2 ⇒ 16 digits, k = 3 ⇒ 64 digits, k = 4 ⇒ 256 digits, and finally k = 5 ⇒ 1024 digits.
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Problem 2: Interpolation & Approximation

(a) Let the entries of x = [x0, x1, . . . , xN−1]
T be N discrete samples of a continuous function f ,

observed at timeponts tk = 2πk/N , k = 0, 1, . . . , N − 1. What is the connection between the
trigonometric interpolation of f at (tk, xk), k = 0, 1, . . . , N − 1, and the discrete Fourier transform
X = FNx, where FN = [fpq] is the Vandermonde matrix with

fpq = ωpqN

ωN = e−2πi/N .

(b) Denote the DFT operator as F , the inverse DFT operator as F−1, and a time series of data as
x. Assuming the existence of a software that efficiently computes a DFT, mathematically explain
a way that this code can be used to efficiently compute an inverse DFT. In other words, how can
you compute F−1(x) using only the code that computes F and the data x?

Solution: (a) The kth coefficient of the trigonometric interpolation is precisely proportional to the
kth element of the discrete Fourier transform, i.e., Xk. The discrete Fourier transform of uniformly
spaced points tk = 2πk

N is

Xk =

N∑
j=0

xje
−i 2πk

N
j ; k = 0, 1, . . . , N − 1 ,

and the trigonometric interpolation of f at (tk, xk), k = 0, 1, . . . , N − 1 is

pN (t) =

N−1∑
k=0

cke
ijt

where

ck =
1

N

N−1∑
j=0

xke
−i 2πk

N
j .

Thus, the relationship is

ck =
Xk

N
.

Note that, depending on which book the student studies from, the 1
N normalization factor might be

in front of the inverse DFT (I’ve even seen a book with 1√
N

). The important thing is the connection

between ck and Xk.

(b) We list three possible answers (providing any one of them will earn full credit).

1. Reverse the inputs:
F−1({xn}) = F({xN−n})/N

where the indices are interpreted modulo N , i.e., xN−0 = x0.

2. Conjugate the inputs and outputs:

F−1(x) = F(x∗)∗/N

3. Swap real and imaginary parts:

F−1(x) = swap(F(swap(x)))/N

where for a, b ∈ R, swap(a+ ib) = b+ ia.
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Problem 3: Quadrature

(a) Explain how to find weights wi and nodes xi such that the quadrature
∑n

i=0wif(xi) gives the
exact solution to

∫∞
0 e−xf(x)dx whenever f is a polynomial of degree ≤ n.

(b) Find nodes x0 and x1 and weights w0 and w1 such that the quadrature
∑n

i=0wif(xi) gives the
exact solution to

∫∞
0 e−xf(x)dx whenever f is a polynomial of degree ≤ 1.

(c) Formulate a convergent quadrature for the integral
∫ 1
0 e

x/
√
xdx.

(d) Let I[f ] =
∫ b
a f(x)dx, and let In[f ] =

∑n
i=0wif(xi). Prove that if In integrates polynomials up

to degree n exactly and the weights wi are all positive then the quadrature is convergent for any
f ∈ C([a, b]), i.e. limn→∞ In[f ] = I[f ].

Solution: (a) This is Gauss-Laguerre quadrature. The weight function is w(x) = e−x. The nodes
xi are the roots of the nth order orthogonal polynomial associated with this weight function (which
can be obtained via, e.g., Gram-Schmidt). The weights are, as usual, the integrals of the Lagrange
polynomials

wi =

∫ ∞
0

e−x`i(x)dx.

(b) First find the second-order Laguerre polynomial using Gram-Schmidt.

φ0(x) = 1, φ1(x) = x−
∫∞
0 xe−xdx∫∞
0 e−xdx

= x− 1

φ2(x) = x2 −
∫∞
0 x2e−xdx∫∞
0 e−xdx

−
∫∞
0 x2(x− 1)e−xdx∫∞
0 (x− 1)2e−xdx

(x− 1)

φ2(x) = x2 − 2− 4(x− 1).

The roots are x0 = 2−
√

2 and x1 = 2 +
√

2.
The weights can be obtained either by integrating the Lagrange polynomials (with the weight
function) or by solving the following 2× 2 linear system:

w0 + w1 = 1, x0w0 + x1w1 = 1

w0 =
2 +
√

2

4
, w1 =

2−
√

2

4
.

(c) Our quadratures usually assume that the integrand is continuous on the closed interval, which is
not the case here since the integrand is singular. We can either set w(x) = 1/

√
x and then formulate

a Gaussian quadrature, or we can simply make a change of variables. For example, letting
√
x = t

yields the integral ∫ 1

0

ex√
x

dx = 2

∫ 1

0
et

2
dt.

We can then apply any convergent quadrature to the transformed integral, e.g. trapezoid rule.
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(d) Let p∗ be the minimax approximation to f(x) of degree ≤ n. Note that

|I[f ]− In[f ]| = |I[f ]− I[p∗] + In[p∗]− In[f ]| ≤ |I[f − p∗]|+ |In[f − p∗]|

because In[p∗] = I[p∗]. Now notice that

|I[f − p∗]| = |
∫ b

a
f(x)− p∗(x)dx| ≤ (b− a)ρn(f)

where ρn(f) is the minimax error. Recall that the Weierstrass approximation theorem says ρn(f)→
0 as n→∞ for functions f ∈ C([a, b]).
Next note that In[·] is a bounded linear operator whose ∞-norm operator norm is

‖In‖∞ =
∑
i

|wi| =
∑
i

wi = b− a.

We can therefore conclude

|In[f − p∗]| ≤ ‖In‖∞‖f − p∗‖∞ = (b− a)ρn(f)→ 0 as n→∞.
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Problem 4: Numerical Linear Algebra

(a) Prove that the Gauss-Jacobi iteration is convergent whenever the coefficient matrix is strictly
diagonally dominant.

(b) Formulate the Modified Gram-Schmidt algorithm to produce an orthogonal basis for the range
of a matrix A. You may assume that A has full column rank.

(c) Suppose that λ̄ is a very good approximation (but not exact) to a simple eigenvalue λ of the
matrix A. Formulate an iterative method that will obtain a good approximation to the associated
eigenvector after a very small number of iterations.

Solution:
(a) Let A = D − E − F where −E and −F are the lower- and upper-triangular parts of A. The
Gauss-Jacobi iteration is

xk+1 = D−1(E + F)xk + D−1b.

The iteration matrix is B = D−1(E + F) and we know that the iteration will be convergent when
‖B‖ ≤ 1 (sufficient condition). If A is strictly diagonally dominant by rows, then the ∞-norm of
B is less than 1 because diagonal dominance implies that each absolute row sum of B is less than
1. The proof for column-wise diagonal dominance is similar, but uses the 1-norm of B.

(b) Let ai be the ith column of A. The MGS algorithm iteratively produces orthonormal vectors

qi as follows: Set a
(1)
i = ai for all i.

• For k = 1, . . . , n do

qk =
a
(k)
k

‖a(k)
k ‖

– For j = k + 1, . . . , n do

a
(k+1)
j = a

(k)
j − (qk · a

(k)
j )qk

The basic idea is that once a qk vector is available, it is projected out of all the remaining columns of
A. In classical Gram-Schmidt, by contrast, at each ai one projects out all of the qk for k = 1, . . . , i.
The algorithms are equivalent in exact arithmetic, but MGS is more numerically stable.

(c) The matrix A − λ̄I has a simple eigenvalue very close to 0 (closer than all others, if λ̄ is a
very good approximation to λ). We can find this eigenvalue and the associated eigenvector by
performing an inverse power iteration on the matrix A− λ̄I, which is the same as a shifted inverse
power iteration on A. The rate of convergence depends on how close λ− λ̄ is to zero, as compared
to the other eigenvalues; by assumption λ − λ̄ is extremely close to zero so the iteration should
converge extremely quickly. The iteration is

(A− λ̄I)z̃k+1 = zk, zk+1 =
z̃k+1

‖z̃k+1‖
.
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Problem 5: ODEs

The following matlab code produces the following figure

-1 1 2 3 4 5 6 7 8

-3

-2

-1

1

2

3

This figure displays the boundary of the stability domain for a certain consistent linear multistep
method (LMM).

(a) Write down the formula for this LMM in the conventional form of coefficients for y(t) and
y′(t) = f(t) at a sequence of equispaced t levels. Does this scheme go under a well-known name?

(b) Determine if the stability domain is given by the inside or the outside (or neither) of the shown
curve.

(c) Determine if the scheme satisfies the root condition.

Solution: (a) After re-writing the equation for ξ as

r3
(
ξ − 11

6

)
+ 3r2 − 3

2
r +

1

3
= 0 (1)

with ξ = λk (“xi” in the code), we can directly read off the scheme as

y′(t+ k) =
1

k

(
11

6
y(t+ k)− 3y(t) +

3

2
y(t− k)− 1

3
y(t− 2k)

)
(since applying the scheme to y′ = λy leads to a linear recursion with (1) as its characteristic equa-
tion). This is a backwards differentiation (BD) scheme. you are not asked to check its order, but it
is the standard third order accurate scheme of this kind, sometimes abbreviated as BD3.

(b) By general theory, immediately to the right of the origin is always outside the stability domain.
For values of ξ = λk very large in magnitude, all roots r1,2,3 to (1) will clearly be forced in towards
r = 0, so the stability domain must be the outside of the curve.

(c) The equation to check for the root condition is (1) after we have set ξ = 0, i.e.

−11

6
r3 + 3r2 − 3

2
r +

1

3
= 0

which we write as

r3 − 18

11
r2 +

9

11
r − 2

11
= 0.
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For any consistent scheme r = 1 has to be a root. Dividing this away leaves

r2 − 7

11
r +

2

11
= 0

with two roots

r± =
7

22
±
√

39

22
i.

Since these form a complex conjugate pair, their magnitudes are equal. We also see from the
constant term of the quadratic equation that the product of the roots is 2/11, which (in magnitude)
is less than one. Thus, both of these two roots are inside the unit circle, and the root condition is
satisfied.
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Problem 6: PDEs

Consider the partial differential equation defined in the (t, x)-domain

utt = 2uxx

−1 ≤ x ≤ 1

0 < t

with boundary and initial conditions

u(t,−1) = u(t, 1) = 0 ; t > 0

u(0, x) = e−x
2 − e−1 ; −1 ≤ x ≤ 1

ut(0, x) = (x+ 1)(x− 1) ; −1 ≤ x ≤ 1

and spatial discretization with stepsize h and time discretization with stepsize k.

(a) Create an explicit O(h2 + k2) finite difference approximation to the solution.

(b) How would one accurately compute the solution at the first timepoint t1 = k?

(c) How would one choose the sizes of h and k sufficient to maintain stability?

Solution: (a) A finite difference approximation of this order would be created by using centered
differences in space and time. That is, at gridpoint (ti, xj), the PDE would discretize to

u(ti+1, xj)− 2u(ti, xj) + u(ti−1, xj)

k2
= 2

u(ti, xj+1)− 2u(ti, xj) + u(ti, xj−1)

h2
.

Answer must communicate (using a Taylor expansion) that centered differences are 2nd order for
full credit.

(b) At the first timepoint, there is a problem in that the central difference discretization requires
the value of the solution at two previous timepoints. At t1 = k, the only information to draw upon
is the value of the solution on the t = 0 boundary. Thus, the discretization is altered to include
derivative information on the initial boundary. The left side of the discretization is altered in the
following manner:

u(t1, xj)− 2u(t0, xj) + u(t−1, xj)

k2
=
u(t1, xj)− u(t0, xj)

k2
− 1

k

(
u(t0, xj)− u(t−1, xj)

k

)
≈ u(t1, xj)− u(t0, xj)

k2
− 1

k
ut(t0, xj)

≈ u(t1, xj)− u(t0, xj)

k2
− 1

k
(xj + 1)(xj − 1)

and thus the computation at t1 becomes

u(t1, xj) = u(t0, xj) + k2
(

1

k
(xj + 1)(xj − 1) + 2

u(t0, xj+1)− 2u(t0, xj) + u(t0, xj−1)

h2

)
.

(c) The CFL condition states that
k

h
<

1√
2
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must be satisfied to maintain stability. Satisfying this condition ensures that the domain of de-
pendence for the PDE is within the domain of dependence of the explicit finite difference scheme.
However, the CFL condition is only necessary and not sufficient.

For full credit, an answer must illustrate a von Neumann analysis. which yields a form for the
approximate solution of

rt/keiωx ,

and leading (after some straightforward algebra) to the characteristic equation

r2 + [4
k2

h2
(1− cos(ωh)− 2]r + 1 = 0 .

The condition to keep |r| < 1 is then
k

h
<

1√
2
,

which is (coincidentally) the CFL condition.
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