
Department of Applied Mathematics
Preliminary Examination in Numerical Analysis

August 2023

Instructions. You have three hours to complete this exam. Submit solutions to four
(and no more) of the following six problems. All problems have equal value.

Please start each problem on a new page. You MUST prove your conclusions or show
a counter-example for all problems unless otherwise noted.
Write your student ID number (not your name!) on your exam.

Problem 1: Root finding

(a) Consider the following iteration schemes of the form xn+1 = f(xn) each with a proposed fixed
point α. Which of the following will converge (provided x0 is sufficiently close to α)? If it
does converge, give the order of convergence; for linear convergence, give the rate of linear
convergence

(i) xn+1 = −16 + 6xn +
12

xn
, α = 2

(ii) xn+1 =
2

3
xn +

1

x2n
, α = 31/3

(iii) xn+1 =
12

1 + xn
, α = 3

(b) Consider an analytic function f(x) such that the fixed point iteration

xn+1 = f(xn)

for any initial value of x0 ̸= 0 eventually hops between +1 and −1. Describe the properties of
f(x) for |x| = 1, |x| < 1, and |x| > 1 that would make this limiting sequence possible. Sketch
such a function.

Solution:

(a) If f(α) = α then α is a fixed point. The iteration scheme converges/diverges near α according
to |f ′(α)| < 1 or > 1.

(i) f ′(x) = 6− 12

x2
, f(2) = −16 + 6.2 +

12

2
= 2 & f ′(2) = 6− 12

4
= 3 implies iterative

scheme is divergent.

(ii) f ′(x) =
2

3
− 2

x3
, f ′′(x) =

6

x4
f(31/3) =

2

3
.31/3 + 3−2/3 = 31/3 & f ′(31/3) =

2

3
− 2

3
= 0

implies iterative scheme is supercritically convergent. f ′′(31/3) ̸= 0 convergence is quadratic
(and not faster than that).

(iii) f ′(x) = − 12

(1 + x)2
, f(3) =

12

1 + 3
= 3 & f ′(3) = −12

42
= −3

4
implies iterative scheme

is linearly convergent with rate 3/4.
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(b) – |x| = 1, the map should satisfy f(1) = −1 and f(−1) = 1.

– |x| < 1, the map should satisfy |f(x)| > |x|.
– |x| > 1, the map should satisfy |f(x)| < |x|.
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Problem 2: Interpolation/Approximation

(a) Define what it means for a polynomial pN (x) to be a minimax approximation of degree N .

(b) Find the first degree Taylor polynomial approximating ex in the interval [−1, 1] centered at
a = 0. Then find the maximum norm of the error in this approximation.

(c) Find the first degree polynomial least squares approximation of the function ex that minimizes
the error in the following norm:

∥f − g∥ :=

√∫ 1

−1
|f(x)− g(x)|2dx

.

(d) Create the polynomial that interpolates ex with the nodes x0 = −1 and x1 = 1.

(e) Which of the three polynomials that you created is the closest to the optimal approximating
polynomial in the Minimax sense and why?

Solution:

(a) For a degree N polynomial, there are N values of x where the error is 0 and N + 2 values of
x where the absolute value of the error is the maximum.

(b) The Taylor polynomial is p1(x) = 1 + x. The maximum error is obtained at the right end
point maxx∈[−1,1] |ex − p1(x)| = |e− 2|

(c) There are two ways to obtain the L2 approximation: (i) remembering that the Legendre
polynomials are orthogonal on the interval [−1, 1] and using them to create the approximation.
(ii) Define the error and look for the minimum. Both ways give the same polynomial.

Option i: p1(x) =
∫ 1
−1 e

xdx∫ 1
−1 1dx

+
∫ 1
−1 xe

xdx∫ 1
−1 x

2dx
x = e−e−1

2 + 3e−1x

Option ii: Define E2 =
∫ 1
−1 |e

x−a− bx|2dx. Take derivatives with respect to the parameters

and set to 0; i.e. solve ∂E2

∂a = 0 and ∂E2

∂b = 0 for a and b. The polynomial as part a results.

(d) The interpolating polynomial through the points is p1(x) = e−1 x−1
−2 + e1 x+1

2 .

(e) We expect the polynomial from part (d) to have the smallest maximum norm in the error
because the interpolation nodes are Chebychev nodes which are nearly optimal interpolation
nodes in the maximum norm sense.
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Problem 3: Quadrature

Gaussian quadratures that are approximated as follows∫ 1

−1
f(x)dx ∼

N∑
k=0

wkf(xk)

where the quadrature nodes include the endpoints (i.e. x0 = −1 and xN = 1) are called Gauss-
Legendre-Lobatto quadratures.

(a) Show that if the interior nodes x1, . . . , xN−1 in the quadrature are given by the roots of
P ′
N (x) where PN (x) is the N th degree Legendre polynomial, then the quadrature is exact for

polynomials up to degree 2N − 1.
Hint: The following recurrence relation is true:

(x2 − 1)P ′
N (x) = xPN (x)− PN−1(x)

(b) Find the 4−point Gauss-Legendree-Lobatto quadrature (nodes and weights) for approximating
the integral

∫ 1
−1 f(x)dx.

It is enough to set up a closed formula which evaluates each of the weights independently.
Hint: The three term recursion for Legendre polynomials is given by

P0(x) = 1, P1(x) = x, (k)Pk(x)− (2k − 1)xPk−1(x) + (k − 1)Pk−2(x) = 0

Solution:

(a) Let s(x) denote a polynomial of degree 2N − 1. Then by polynomial long division

s(x) = q(x)(x2 − 1)P ′
N (x) + r(x)

where q(x) is a polynomial of degree of at most N − 2 and r(x) is a polynomial of degree at
most N .

Then ∫ 1

−1
s(x)dx =

∫ 1

−1
q(x)(x2 − 1)P ′

N (x)dx+

∫ 1

−1
r(x)dx.

First let’s take a closer look at
∫ 1
−1 q(x)(x

2 − 1)P ′
N (x)dx.

By the hint, we know that∫ 1

−1
q(x)(x2 − 1)P ′

N (x)dx = N

∫ 1

−1
q(x)xPN (x)dx−N

∫ 1

−1
q(x)PN−1(x)dx

The polynomial xq(x) is of degree N − 1 and thus is orthogonal to PN (x). Similarily, q(x) is
a polynomial of degree N − 2 and is orthogonal to PN−1(x). Thus this integral is 0.

This means that ∫ 1

−1
s(x)dx =

∫ 1

−1
r(x)dx
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and that the quadrature should satisfy the following

N∑
j=0

wjs(xj) =
N∑
j=0

wjr(xj)

and
N∑
j=0

(
q(xj)(x

2
j − 1)P ′

N (xj)
)
wj

for all functions s(x). The only way that this can be true for all polynomials of degree 2N −1
is the quadrature nodes are ±1 and the roots of P ′

N (x).

(b) We need get two more nodes so N = 3. Using the provided recursion formula, we find that

P3(x) =
5
3x

3− 3
2 . Thus the two additional quadrature nodes are x1 = −

√
5
5 and x2 =

√
5
5 . The

weights can be found by the standard formula

wj =
∫ 1
−1 Lj(x)dx where Lj(x) is the Lagrange polynomial associated with the jth interpola-

tion node.
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Problem 4: Linear algebra

In some computational settings a block LU decomposition is useful. In this problem you will build
the block LU factorization of a matrix and determine the computational complexity of using such
a technique for solving a linear system.

(a) Consider the 2n× 2n block matrix

A =

[
A11 A12

A21 A22

]
where each block is an n× n matrix. Derive the matrices L̂21 and Â22 such that[

A11 A12

A21 A22

]
=

[
I 0

L̂21 I

] [
A11 A12

0 Â22

]
.

(b) What is the computational cost in the big O sense for constructing the factorization and
solving a linear system Ax = b with the precomputed factorization? The answer should be
in terms of the number of blocks and the size of the blocks. Provide justification for your
answer.
Note: you should assume that any inverse created while making the factorization is available
for the solve stage.

(c) Building off your work in part (a), derive the formula for a 3n× 3n block LU factorization of
a matrix A where each of blocks is of size n× n. This means that

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


where each bock is an n× n matrix. Hint: Blocking will be helpful.

(d) What is the computational cost in the big O sense for constructing the factorization and
solving a linear system Ax = b with the precomputed factorization in part (c)? The answer
should be in terms of the number of blocks and the size of the blocks. Provide justification
for your answer.
Note: you should assume that any inverse created while making the factorization is available
for the solve stage.

Solution:

(a) L̂21 = A21A
−1
11 and Â22 = A22 − A21A

−1
11 A12.

(b) Constructing the LU factorization involves one n×n matrix inverse, two n×n matrix products
and one matrix add. These have O(n3), O(2n3) and O(n2) cost respectively. Thus the total
cost is O(3n3 + n2).

The solve stage involves 2 steps: First, you must solve[
A11 A12

0 Â22

] [
v1
v2

]
=

[
b1
b2

]
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The cost of inverting Â22 is O(n3). This will give v2 which can be plugged into the first row
equation. Then

v1 = A−1
11 (b1 − A12v2)

The cost of applying A12 and A−1
11 is O(2n2). Since the matrix A−1

11 was computed in the
building stage of the LU factorization, there is no additional cost associated with it.

The cost of solving Lx = v is O(n2) since it only requires applying L̂21 to a vector and adding
two vectors.

(c) Following the hint we chose to block the matrix as follows.

A =

[
A11 Ã12

Ã21 Ã22

]
where Ã12 = [A12A13], Ã21 =

[
A21

A31

]
and Ã22 =

[
A22 A23

A32 A33

]
.

From part (a), we know that the following LU factorization holds.[
A11 Ã12

Ã21 Ã22

]
=

[
In 0n×2n

L̂21 I2n

] [
A11 Ã12

0n Â2

]
where L̂21 = Ã21A

−1
11 and Â2 = Ã22 − Ã21A

−1
11 Ã12.

Now we will apply the block LU factorization to Â22. First begin by blocking the matrix into
its original form.

Â2 =

[
Â22 Â23

Â32 Â33

]
Then again by part (a), the LU factorization of Â2 is

Â2 =

[
In 0n
L̂32 In

] [
Ã22 Ã23

0n Â3

]

where L̂32 = Ã23Ã
−1
22 and Â3 = Â33 − Ã32Ã

−1
22 Ã23.

Thus the full LU factorization of A has the following factors.

L =

 In 0n 0

L̂21
In 0n
L̂32 In



U =

 A11 Ã21

0n Ã22 Ã23

0n 0n Â3


(d) To count the cost of constructing the LU factorization, we count the cost of each of the steps.

The cost for zeroing out the first block column is O(5n3 + 4n2). (One O(n3) inversion plus
a matrix-multiply involving an n × n matrix with an n × 2n matrix that matrix is then left
multiplied by a 2n×n matrix. Finally there is matrix addition of 2n×2n matrices.) The cost
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of processing the lower right block of the matrix is the same as in part (b) of this problem
O(3n3 + n2).

Again the solve is two steps: (i) solve Uv = b and solve Lx = v.

The first system that is solve is A11 Ã21

0n Ã22 Ã23

0n 0n Â3

 v1
v2
v3

 =

 b1
b2
b3


The cost of solving for v3 is O(n3). The cost of solving for v2 is O(2n2) since it requires to
matrix vector multiplies of n×n matrices. The cost of solving for v1 is O(3n2) since it requires
3 matvecs of n× n matrices. Thus the cost of solving for v is O(n3 + (b+ (b− 1))n2) where b
is the number of blocks in the matrix.

The cost of solving Lx = v is O(3n2). The cost of geting x1 is free. The cost of solving for
x2 is 1 matvec plus a vector add thus O(n2). The cost of solving for x3 is two matvecs plus
adding 3 vectors thus O(2n2). So the total cost in terms of the number of blocks is O(bn2).

Note that these solves are asympotically less than a ful
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Problem 5: Numerical ODEs

Consider the following implicit three-step method

yn+3 − yn = h

[
µf(tn+3, yn+3) +

9

8
f(tn+2, yn+2) +

9

8
f(tn+1, yn+1) +

3

8
f(tn, yn)

]
with undetermined coefficient µ to be designed to numerically solve

y′ = f(t, y), y(t0) = y0

i) Determine the value of µ that makes this scheme consistent.

ii) Determine the order of the consistent scheme by looking at the truncation error.

iii) Is the consistent scheme convergent?

Solution:

i) µ = 3/8 by consistency condition

ii) order 4

iii) yes

9



Problem 6: Numerical PDEs

Consider the initial value problem for one-dimensional wave propagation

∂ttu = c2∂xxu, t ≥ 0, u(x, 0) = f(x), ut(x, 0) = g(x).

(a) An explicit time-stepping numerical method using central differences to discretize space and
time derivatives gives

U(x, t+ k)− 2U(x, t) + U(x, t− k) = α2 [U(x+ h, t)− 2U(x, t) + U(x− h, t)]

where α = c(h/k), k = ∆t and h = ∆x. Assuming U(x, t) = ζt/keiωx, a Von Newmann
analysis performed on this disctetization gives the amplification equations

ζ2 − 2βζ + 1 = 0 where β = 1− 2α2 sin2
(
ωh

2

)
.

Show that the scheme is conditionally stable and establish explicitly the stability condition.

(b) Consider the following implicit time-stepping numerical method using central differences to
discretize space and time derivatives

U(x, t+ k)− 2U(x, t) + U(x, t− k) =
α2

2
[U(x+ h, t− k)− 2U(x, t− k) + U(x− h, t− k)] (1)

+
α2

2
[U(x+ h, t+ k)− 2U(x, t+ k) + U(x− h, t+ k)] (2)

(i) Find the amplification equation. (β = 1 + 2α2 sin2
(
ωh
2

)
is a useful definition).

(ii) Determine whether the scheme is conditionally or absolutely stable.

Solution:

(a) Assume
U(x, t) = ζt/keiωx

To get

ζ − 2 +
1

ζ
= α2

(
eiωh − 2 + e−iωh

)
=⇒ ζ2 − 2ζ + 1 = 2α2ζ (cos(ωh)− 1)

= −4α2ζ sin2(ωh/2)

Thus
ζ2 − 2(1− 2α2 sin2(ωh/2))ζ + 1 ≡ ζ2 − 2βζ + 1 = 0

as stated in the question. Thus

ζ± = β ±
√
β2 − 1

if |β| > 1 then magnitude of one of the roots |ζ±| is > 1 implying instability. Thus we
must choose |β| < 1 implying

ζ± = β ± i
√
1− β2 s.t. |ζ| = 1.
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Thus the scheme is conditionally stable. The stability condition is

−1 ≤ β ≤ 1, β = 1− 2α2 sin2
(
ωh

2

)
=⇒ α ≤ 1

(b) Assume
U(x, t) = ζt/keiωx

To get

ζ − 2 +
1

ζ
=

α2

2

(
eiωh − 2 + e−iωh

)(
1

ζ
+ ζ

)
=⇒ ζ2 − 2ζ + 1 = α2 (cos(ωh)− 1)

(
ζ2 + 1

)
= −2α2 sin2(ωh/2)

(
ζ2 + 1

)
Thus

(1 + 2α2 sin2(ωh/2))ζ2 − 2ζ + (1 + 2α2 sin2(ωh/2)) ≡ βζ2 − 2ζ + β = 0

where β = (1 + 2α2 sin2(ωh/2)). Thus we find β ≥ 1, ∀ω. Thus

ζ± =
1± i

√
β2 − 1

β
, |ζ| = 1.

No restriction on α, so the scheme is absolutely stable.
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